欢迎来到网际学院,让您的头脑满载而归!

活体人脸检测综述

发布日期:2020-05-06 16:54:01 作者:管理员 阅读:136

随着人脸识别、人脸解锁等技术在金融、门禁、移动设备等日常生活中的广泛应用,人脸防伪/活体检测(Face Anti-Spoofing)技术在近年来得到了越来越多的关注。在大多数人的印象中,人脸识别技术就是让机器把人认出来。没错,用机器来认人,

活体人脸检测综述

随着人脸识别、人脸解锁等技术在金融、门禁、移动设备等日常生活中的广泛应用,人脸防伪/活体检测(Face Anti-Spoofing)技术在近年来得到了越来越多的关注。在大多数人的印象中,人脸识别技术就是让机器把人认出来。没错,用机器来认人,这正是人脸识别系统的最核心功能。然而,很多人不知道的是,一个可以正常工作的人脸识别系统,除了实现“认人”以外,还包括许多其他重要的技术,其中就包括今天要给大家介绍的,应用于人脸识别身份认证系统中至关重要的技术——活体检测

设想一下,假设你的Face Verification算法做的再漂亮,而Face Anti-Spoofing做的很烂,如果这个时候恰恰有某位同学拿着马云脸的视频去刷了支付宝

活体人脸检测综述

人脸验证(Face Verification):意思就是说,给定两张图,算法要判断出这两张图是不是同一个人,这是近年来一个非常热门的研究方向,也产生了一大批模型和 Loss Function。

人脸防伪(Face Anti-Spoofing):意思就是说,你刷脸的时候,算法要判别这张脸是不是真人活体脸,而对于合成的、或者他人照片来攻击算法的,应该予以拒绝。

PA(Presentation Attacks)是常用的攻击方式,主要包含print attack(即打印出人脸照片)、replay attack(播放视频)、mask attack(带人脸假体面具等)。

照片攻击与动作活体:

最简单的攻击方式相信大家都能想到,用照片。现在大家都喜欢玩社交媒体,经常往朋友圈和微博上传照片,搞到一张别人的照片简直轻而易举。所以,照片自然是活体检测首要的防范对象。对付照片的方式,大家也很容易想到。照片总是死的,不能做出眨眼张嘴转头这些动作。那好,在活体检测这一关,我就给你下达几个动作的指令,让你做动作给我看,这就是交互式动作活体检测。

升级版照片攻击:

有了动作活体这个东西,用静止照片来攻击就不行了。于是攻击者一拍脑袋,就想出了经过“改进”的攻击方式。他先是把另外一个人的照片打印出来,跟真人一般大小,还挺清晰的,反正花不了几个钱。你不是要让我眨眼张嘴吗?照片本身不会眨眼张嘴,可是我本人会啊。于是他就把照片在眼睛和嘴巴那块抠个洞,然后把照片贴在脸上,他自己的眼睛和嘴巴就露出来了。你让他眨眼,他就眨眼,让他张嘴,他就张嘴。对此,我们只能说,too naive too simple,因为抠眼和抠嘴后的造作痕迹实在太明显了,对我们的抠眼抠嘴检测算法形成不了太大的威胁。最后说下转头,攻击者往往把照片贴在自己脸上,或者在那揉来揉去,想模拟出真实的转头效果。可是,他们不知道,这种伪造的转头动作,人脸上各部位的运动情况实在与真人相去甚远,很容易被我们的转头检测算法识别出来。

视频回放攻击:

到这里,攻击者还是不肯作罢,又心生一计:不就是几个动作吗?我把那人的动作录成视频,再拿来播放不就得了。其实啊,到这里我们可以明显看到,攻击难度已经上升一个级别了。为什么呢?你要搞到另外一个人的视频,还得包含很规矩的这几个动作,本身就不那么容易。可是我们不能存有侥幸心理啊。没关系,办法总是有的。你把视频搞来了,总得找个有屏幕的东西播放啊。这样一来,就漏马脚了。你只要仔细看看用屏幕播放视频,然后再经过摄像头成像的画面,再看看真人在摄像头面前成像的画面,就会发现,二者其实很不一样啊。用普通PC屏幕播放的效果就不说了,一堆纹路,我们称之为摩尔纹。用pad或者手机的高清屏播放的效果好一些,可是也有很多不一样,比如反光、倒影,最关键是画面质量总是模糊一些,失真度明显高一些。所以呢,我们根据这些线索搞了对应的算法,把视频攻击也能防得很好。

立体面具攻击:

照片和视频回放攻击都是把人脸图像投射到一个平面上,还一种攻击方式就是做一个和真人比较相似的立体面具。到这里,攻击难度又上升了一个级别。面具有很多种,最普通的是塑料或者硬纸做成的面具,这种面具虽然成本低廉,但材质相似度极低,用普通纹理特征就可以识别出来。另外,还有用硅胶乳胶以及3D打印的的立体面具,这类面具的表观和皮肤更加接近,但它们的材料表面反射率和真实人脸还是不同的,因此在成像上仍然有差别,这种差别是可以用最先进的机器学习算法学习到,很难达到以假乱真的程度。

静默活体:

动作活体检测的方式具有很高的安全性,但另一方面,对用户来说,由于要配合着做几个动作,因此体验不是非常好。为此,我们又发明了一种新的活体检测方式,不需要用户做任何动作,只需要自然正对摄像头三四秒钟,就可以完成检测了。也许你会问,如果不做动作,岂不是拿张普通照片就可以攻破了?非也。虽然没有刻意做动作,但真实的人脸并不是绝对静止的,总有一些微表情存在,比如眼皮和眼球的律动、眨眼、嘴唇及其周边面颊的伸缩等,利用这些特征,我们完全可以防住照片攻击。至于视频回放攻击和立体面具攻击,防范的原理和之前介绍的一样。

红外活体:

在有些应用场景,比如ATM机上,我们可以安装红外摄像头,利用红外图片,我们可以实现更好的防攻效果。我们知道,不管是可见光还是红外光,其本本质都是电磁波。我们最终看到的图像长什么样,与材质表面的反射特性有关。真实的人脸和纸片、屏幕、立体面具等攻击媒介的反射特性都是不同的,所以成像也不同,而这种差异在红外波反射方面会更加明显,比如说,一块屏幕在红外成像的画面里,就只有白花花的一片,连人脸都没了,攻击完全不可能得逞。

到这里,人脸识别系统常见的攻击手段以及活体检测方式就介绍得差不多了,相信你已经对人脸识别系统的攻防有了一个比较全面的了解。事实上,研究人员对各种人脸识别的攻击方式都有预防,攻击者绝不可能轻易攻破我们的系统。

 

人脸活体检测主要有以下三种方案:

1、Texture-based Methods

提取人脸的几何特征、纹理特征等再结合SVM、LR等分类器进行分类,为了克服光照等因素的影响,会常常将RGB输入空间变换到HSV,YCbCr或Fourier spectrum空间;AlexNet之后,研究者们纷纷转向设计更有效的深度神经网络结构来做二分类。

2、Temporal-based Methods

通过执行系统发出的“眨眼”、“点头”、“转向”等指令来辨别真假活体。

3、Remote Photoplethysmography (rPPG)

rPPG可以在不接触皮肤的情况下获取生物信号(例如心率等),因此可利用rPPG来进行活体检测,之前也有基于rPPG的研究发表。

尽管这些Deep Models在很多benchmark上均取得了不错的成绩,但是笔者认为很多模型在现实中的可用性几乎为零。利用 Softmax Loss + DNN 取得良好成绩的原因极有可能是 DNN 仅仅学习到了 too young too simple的区分特征(例如用照片攻击时CNN学习到了照片边框;拍摄Print Attack时的照片反光/过曝;用录制视频攻击时CNN学习到了如何根据Moire Pattern(即“水波纹”)来区分),而并不是学习到了真正如何区分活体与非活体。所以这些模型往往都是在某一个benchmark上严重过拟合,在 cross-datasets testing(即将模型用于其他数据集测试) 的时候,泛化结果就会非常非常差。尽管这种现象可以通过搜集更加 diverse 的数据集来缓和,但是依然不能从根本上解决问题。下面介绍一篇CVPR2018上的 Face Anti-Spoofing 相关的文献,大致看了一遍,还是非常不错的工作,有兴趣的读者请去阅读原文。

http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Learning_Deep_Models_CVPR_2018_paper.pdfopenaccess.thecvf.com

 

这篇Paper的idea主要是基于这样一个思想:充分利用活体与假体人脸的时空信息来形成更为有效的特征。

从空间信息角度来看,活体人脸是带有一定的距离信息的,例如正面拍照时,活体人脸的鼻子与摄像头的距离会比脸部其他部位要近一些(因为鼻子是凸出来的嘛~),而打印的照片像素深度上往往都是平的,所以可以用来进行基本的区分。

从时间信息角度来看,有研究表明,可以从真实人脸视频中检测出rPPG信息(例如心律信号)。因此可以利用rPPG来辅助分类。

活体人脸检测综述

Fig 2. pipeline

本文模型(CNN-RNN)利用CNN提取人脸特征,然后将feature map与depth map(即从2D图像中得到的3D形状表达)输入到作者提出的non-rigid registration layer,再将aligned feature maps与rPPG输入到RNN进行分类。Method pipeline如 Fig 2. 所示。

人脸正面的3D信息 活体人脸检测综述 可以表示为identity base与expression base的线性组合:

由于从2D图像中估计3D信息是一件比较困难的事情,因此在这里对其进行归一化到 活体人脸检测综述 区间,然后将 Z-Buffer 算法应用于 活体人脸检测综述 来投影到2D平面,这样就得到了人脸图像预估的2D depth map。

传统rPPG信息往往容易受到光照、人脸表情、面部姿态等因素的影响使得结果不够精确。本文提出利用 RNN 来学习rPPG。

对于跟踪到的人脸区域,首先计算正交色度信号:

然后利用色度信号标准差的比例来计算血流信号:

接下来对 活体人脸检测综述 应用快速傅里叶变换,就得到了50维的 rPPG 信号。

网络结构如下图所示:

活体人脸检测综述

Fig 3. CNN-RNN architecture

用于预测 depth map 以及生成feature map 的 CNN 的 Loss 如下:

用于预测 rPPG 信号的 RNN Loss 如下:

Classification score的计算方式如下:

其中, 活体人脸检测综述 代表rPPG信号, 活体人脸检测综述 代表最后一帧的depth map。

为了让 RNN学习不同时间和不同人物主体下的相同脸部区域的activation变化信息,作者添加了Non-rigid Registration Layer,个人认为是整个方法里面一个非常亮眼的idea。

首先保留depth map中超过threshold的部分:

然后计算mask 活体人脸检测综述 和 feature map 活体人脸检测综述 的内积:

接下来再利用3D信息 活体人脸检测综述 得到frontalized image:

Non-rigid Registration Layer的作用在于消除了脸部表情、姿态,背景区域,以及更好地利用depth map信息方面,从而有效地提升了spoofing recognition的性能。

活体人脸检测综述

Fig 4. Non-rigid Registration Layer

个人觉得,这篇文章整体上idea还是不错的,novelty也很够。实验结果也还比较漂亮,个人比较肯定的点在于利用时空信息结合rPPG做特征融合,以及Non-rigid Registration Layer的助攻,来综合提高活体检测的性能,以及可解释性方面的工作。而不像传统活体检测领域的 Paper 单纯只是 train 个 binary classifier,各种花式 part-based + ensemble model 来刷分。

References   Yaojie Liu, Amin Jourabloo, Xiaoming Liu. Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision[C]. // IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2018


下面通过学术论文、专利发明和企业研发等三方面进行调查:

一、学术论文方面

人脸活体检测的学术研究机构主要有中科院自动化所李子青团队、瑞士IDAIP研究室高级研究员Sebastien Marcel主导的Biometrics group、英国南安普顿大学机器视觉系教授Mark S. Nixon所属的视觉学习与控制研究组和国际生物特征识别著名专家Anil K. Jain所在的密歇根州立大学生物特征识别研究组。近些年上述机构所著的关于活体检测的高质量文章陆续发表在IEEE TIFS/TIP等一些顶级期刊,同时Springer于2014年出版了由Sebastien Marcel等编著的《Handbook of Biometric Anti-Spoofing》,书中深入介绍了指纹、人脸、声音、虹膜、步态等生物特征识别反欺骗的方法,还对涉及的性能评估指标、国际标准、法律层面、道德问题等作了阐述,为生物特征识别反欺骗技术的进一步发展作出重要贡献。

1、综述文献[1]将活体检测技术分为运动信息分析、纹理信息分析、活体部位分析三种,文中讨论了基于真伪图像存在的非刚性运动、噪声差异、人脸背景依赖等特性形成的分类器性能。

2、文献[2]介绍了一个公开的人脸活体检测验证数据库(PHOTO-ATTACK),在数据库(PRINT-ATTACK)的基础上进行了扩展,添加移动手机拍摄照片和高分辨率屏幕照片。同时文中提出了一种基于光流法的前后景相关性分析来辨别影像真伪,取得较好的性能。

3、文献[3]针对多生物识别欺骗稳健性的提高,提出一种异常检测新技术,首先通过中值滤波器来提高传统集成方法中求和准则的容差,再通过一种基于bagging策略的检测算法提高检测拒绝度,该算法融合了2D-Gabor特征、灰度共生矩阵(GLCM)多种特征、傅里叶变换的频域信息,特征提取后得到3种特征向量,使用主成分分析(PCA)降维选取形成混合特征,输入bagging分类器并获得检测结果,实验表明算法具有较高准确性。

4、文献[4]提出一种基于颜色纹理分析的活体检测算法,通过LBP描述子提取联合颜色(RGB、HSV和YCbCr)纹理信息来表征图像,将信息输入SVM分类器进行真伪辨别。

5、14年TIP的文献[5]提出一种基于图像质量评价的方法来增强生物特征识别的安全性,使用25种图像质量分析指标(列出较关键的几个有:像素差异性分析、相关性分析、边缘特征分析、光谱差异性、结构相似性、失真程度分析、自然影像估计),该方法只需要一张图片就可以区别真伪,适用于多种生物特征识别场合,速度快,实时性强,且不需要附近设备及交互信息。

6、14年12月发表在TIFS的文献[6]提出一种反欺骗能力评估框架—Expected Performance and Spoofability (EPS)Framework,针对现有反欺骗系统作性能评估,创新性地指出在一定条件下验证系统将失去二值特性转变为三类:活体合法用户、无用攻击者(zero-effort)和欺骗攻击者,EPS框架主要通过测量系统期望达到的FAR(错误接受无用率)和SFAR(错误接受欺骗率)及两者之间的范围,同时考虑系统被欺骗的成本和系统存在的弱点,并量化为单一的值用来评价系统优劣。

7、15年5月发表在TIFS的文章[7]针对视频回放攻击提出一种基于visual rhythm analysis的活体检测方法,文中指出:由于静态背景易获得,基于背景的方法显得容易被破解;利用照片的旋转和扭曲也可以轻易模拟并欺骗基于光流法的活体检测系统;当攻击视频包含头部、嘴唇、眼睛等动作可以容易通过基于运动交互的系统;文中对傅里叶变换后的视频计算水平和垂直的视觉节奏,采用三种特征(LBP、灰度共生矩阵GCLM、HOG)来对visual rhythm表征与降维,利用SVM分类器和PLS(偏最小二乘)来辨别视频真伪。

8、15年4月TIFS的文章[8]提出一种基于局部纹理特征描述子的活体检测方法,文中将现有的活体检测方法分为三类:动态特征分析(眨眼)、全局特征分析(图像质量)和局部特征分析(LBP、LBQ、Dense SIFT)。提出的方法对一系列特征向量进行独立量化或联合量化并编码得到对应的图像标量描述子,文中实验部分给出不同局部特征对应的性能。

9、15年8月TIP的文章[9]在面向手机端的人脸识别活体检测的需求,根据伪造照片相对于活体照片有光照反射特性呈现出更加均衡扩散缓慢的特点,提出一种基于图像扩散(反射)速度模型(Diffusion Speed Model)的活体检测方法,通过引入全变差流(TV)来获得扩散速度,在得到的扩散速度图基础上利用LSP编码(类似LBP)获取的局部速度特征向量作为线性SVM分类器的输入,经分类区分输入影像的真伪。

10、15年12月TIP文献[10]提出一种基于码本(codebook)算法的新型人脸活体检测方法,根据重采样导致伪造影像出现的条带效应和摩尔纹等噪声现象,文中通过三个步骤来完成分类,第一步:计算视频噪声残差,通过将原始视频和经高斯滤波以后的视频作残差得到噪声视频,再对其作二维傅里叶变换得到频域信息,可以看到伪造视频的幅度谱和相位谱中呈现出明显的摩尔纹及模糊等区别,计算得到相关时频描述子。第二步通过码本算法迭代选取最能表示的descriptor,经过编码将这些描述子转化成新的矩阵表示(矩阵不能直接拿来分类),故用池化(pooling)方法(列求和或取最大值)得到输入向量。第三步利用SVM分类器或PLS(偏最小二乘)对输入向量分类判断其真伪。

11、15年4月TIFS的文献[11]提出一种基于图像失真分析(IDA)的人脸活体检测方法,同时给出了一个由多种设备采集的人脸活体检测数据库(MSU-MFSD)。IDA特征向量分别由镜面反射(打印纸张或者LCD屏幕3维)、模糊程度(重采集—散焦2维)、图像色度和对比度退化(对比度失真15维)、颜色多样性(打印机或LCD颜色分辨率有限等101维)四种典型特征组成(121维向量),通过输入基于SVM的集成分类器(ensemble classfier),训练分类出二值真伪结果(voting scheme——用于判断视频攻击的情况,超过50%帧数为真即认定为活体)。

12、几种公开的人脸活体检测数据库:

活体人脸检测综述

二 专利发明方面

对于以研发产品为主的公司来说,用户的体验是检验产品成功的最重要的标准之一。下面从用户的配合程度来分类人脸活体检测技术。

1、根据真人图像是一次成像的原理,其比照片包含更多的中频细节信息,专利1[12]首先采用DoG滤波器获取图像信息中的中频带信息,然后通过傅里叶变换提取关键特征,最后通过logistic回归分类器对提取和处理后的特征信息辨析和分类,已达到所识别的图像为真实人脸还是照片人脸的目的。优点:不添加额外的复制设备、不需要用户的主动配合、实现简单、计算量小且功能独立;缺点:采集的正反样本要全面,只针对照片。

2、专利2[13]是通过检测人脸的眼睛区域是否存在亮瞳效应来区分真实人脸和照片视频中的人脸。亮瞳效应的判断是利用亮暗瞳差分图像的眼睛区域是否存在圆形亮斑而定。另外,采集亮瞳图像所涉及的设备包括红外摄像头和由LED灯做成的红外光源。优点:照片和视频都可以,使可靠性增加;缺点:需额外的设备。

3、专利3[14]利用共生矩阵和小波分析进行活体人脸检测。该方案将人脸区域的灰度图像首先进行16级灰度压缩,之后分别计算4个灰度共生矩阵(取矩阵为1,角度分别为0。、45。、90。、135。),然后在灰度共生矩阵的基础上再提取能量、熵、惯性矩和相关性四个纹理特征量,再次分别对四个灰度共生矩阵的4个纹理特征量求均值和方差;同时对原始图像利用Haar小波基进行二级分解,提取子带HH1,HH2的系数矩阵后求均值和方差;最后将所有的特征值作为待检测样本送入训练后的支持向量机中进行检测,分类识别真实和假冒人脸图像。优点:不需添加额外的辅助设备、不需要用户降低了计算复杂度,提高了检测准确率;缺点:只针对照片欺骗。

4、专利4[15]是一种基于HSV颜色空间统计特征的人脸活体检测方法,该方案将人脸图像从RGB颜色空间转换到YCrCb;然后进行预处理(肤色分割处理、去噪处理、数学形态学处理和标定连通区域边界处理)后获取人脸矩形区域的坐标;再对待检测的人脸图像分图像块,并获取待检测的人脸图像中的左右图像块的三个颜色分量的特征值;最后将归一化的特征值作为待检测样本送入训练好的支持向量中进行检测,确定包含人脸的图像是否为活体真实人脸图像。优点:不需添加额外的辅助设备和用户的主动配合,降低了人脸认证系统延时和计算复杂度,提高了检测准确率;缺点:只针对照片欺骗,阈值的设置为经验值。

5、专利5[16]使用的活体识别方法为通过摄像头在一定时间内拍摄多张人脸照片,预处理后提取每张照片的面部本特征信息,将先后得到的面部特征信息进行对比分析获取特征相似度,设置合理阈值,若相似度在阈值范围内,则认为有微表情产生,识别为活体,否则为非活体。优点:不需要人脸部做大量的表情配合动作;缺点:只针对照片欺骗。

6、专利6[17]主要基于人脸3D模型对所述人脸形状进行归一化处理,并获得所述人脸形状相对于人脸3D模型的旋转角度,将连续多帧图像的旋转角度连成一条曲线,判断该曲线是否满足设定要求,若满足,判断角度最大的一帧图像中人脸肤色区域面积比例是否大于K,若是,则判断为真实人脸,否则为虚假人脸。优点:误报率降低,速度快,用户体验好;缺点:需较大的计算时间和空间开销。

7、专利7[18]公开一种基于背景比对的视频和活体人脸的鉴别方法。首先对输入视频的每一帧图像进行人脸位置检测,很据检测出的人脸位置确定背景比对区域;然后选取输入视频中和背景比对区域在尺度空间上的极致点作为背景比对区域的特征点,得到背景特征点集Pt;再用Gabor小波变换描述图像I在背景特征点集Pt的特征,根据此结果定义活体度量L;如果活体度量L大于阈值θ,判断为活体,否则视为假冒视频。优点:解决仅通过单个摄像头进行视频人脸和活体人脸的计算机自动鉴别问题,不需用户配合,实时性较好;缺点:只针对视频欺骗。

8、专利8[19]提供了一种具有活体检测功能的双模态人脸认证方法。首先建立存储有已知身份人脸的可见光训练图像和近红外外训练图像的数据库;然后通过图像采集模块同时采集待认证人头部的可见光图像和近红外图像;采用人的脸部的人脸近红外图像与人脸可见光图像双模态特征的联合识别。优点:提高了识别认证精度,有效避免人脸存在较大变化情况下识别失败的问题,避免照片或者模型欺骗;缺点:需红外设备。

9、为更好地防止活体检测中的照片和视频剪辑方式等欺诈行为,专利9[20]不同之处在于,用户并不知道系统发出何种指令,要求用户做出何种动作,而且用户实现也并不知晓系统要求的动作完成次数。原因在于,预先定义了一个动作集(包括眨眼、扬眉、闭眼、瞪眼、微笑等),用户在进行活体检测时,系统每次都从动作集中选择一种或若干种动作,随机指定完成动作的次数,要求用户在规定的时间内完成它们。优点:更好地防止活体检测中的照片和视频剪辑方式等欺骗行为,活性检测的可靠性和安全性更高;缺点:需用户主动配合,容易受外部环境影响。

10、专利10[21]主要利用人脸面部运动和生理性运动来判断是照片还是真实人脸。人脸检测结果框内的人脸面部运动是在眼睛和嘴附近进行判断,依据运动区域中心坐标和人脸的眼睛的位置坐标之间,以及和嘴的位置坐标之间的欧式距离是否小于预定阈值。确定人脸生理性运动是根据运动区域内的运动方向为垂直方向的原理。优点:可靠性提高;缺点:只针对照片欺骗。

11、专利11[22]根据光流场对物体运动比较敏感,而真实人脸的眼部在姿势校正和眨眼过程中又比照片产生更大的光流,利用LK算法计算输入视频序列中相邻两帧的光流场,求得光流幅值,得到幅值较大的像素点数所占的比重,若比例足够大则标定为眼部发生了运动,从而判定为真实人脸。优点:系统的隐蔽性和安全性增强。缺点:只针对照片欺骗。

12、专利12[23]也是定位眼睛和嘴巴区域。根据采集的图片帧数(包含面部中眼睛和嘴巴等关键点)和特征平均差异值(由采集的两帧图片对应的特征值的加权欧式距离获得)的计算次数与预设值的比较,以及平均差异值与阈值的比较来判定是否为真实人脸。优点:解决了采用三维深度信息进行人脸活体检测时,计算量大的问题,以及应用场景约束的情况。

13、专利13[24]公开一种活体人脸的快速识别方法,其方案为:首先输入连续的人脸图像(若相邻两幅人脸图像不为同一状态则予以丢弃,重新多幅连续的人脸图像),对每幅人脸图像确定瞳孔位置并裁出人眼区域;然后通过支持向量机训练方法和AdaBoost训练方法对睁眼和闭眼样本进行训练,最后判断眼珠睁闭状态,若存在眨眼过程则通过活体判别。优点:有效拒绝非真实人脸欺骗识别,计算速度提高,不受应用场景的约束;缺点:需用户主动配合。

14、专利14[25]通过判断连续多帧图像中所获的眼睛或嘴巴区域的属性变化值(上眼皮的距离变化值或上下嘴唇间的距离变化值)的规律是否符合真实人脸的变化规律,若是,则判断为真实人脸,否则为虚假人脸。所采用的技术核心:将当前帧与前t帧的眼睛或嘴巴区域合并成一张图,采用基于深度学习的回归方法输出两帧图像中属性变化值,重复该步骤直至获得每帧图像的属性变化值;将所有属性变化值按帧时间顺序组成一向量,对各向量的长度进行设定,然后利用SVM分类器对所述向量进行分类,再判断分类结果是否满足设定动作下的真实人脸的变化规律。优点:检测精度高、速度快,针对照片和视频欺骗;缺点:需用户主动配合。

15、专利15[26]是通过眨眼动作进行活体检测。首先对人脸检测与眼睛定位;然后眼部区域截取,从归一化处理后的图像中图像中计算眼睛的开合程度;运用条件随机场理论建立用于判断眨眼动作的模型。优点:可仅通过单个摄像头进行鉴别;缺点:需用户主动配合,只针对照片欺骗。

三 企业研发应用方面

活体人脸检测综述

对支付宝人脸登陆系统的活体检测功能进行了实际测试(iphone5S,支付宝最新版本9.5.1,人脸识别和活体检测模块是独立的,其活体检测只有采用了眨眼模式,之前还有点头),检测结果如下:

活体人脸检测综述

结论:

1、根据调查结果的实际应用技术,针对三种主要的欺骗手段,目前有以下几种应用广泛的活体检测方法:

活体人脸检测综述

2、从用户配合、对光照影响、是否需要附加设备、抵挡攻击、用户体验等方面对比了人脸识别系统中活体检测应用较多的7类具体方法,形成下表:

活体人脸检测综述

3、随着人脸识别系统的发展和演进,综上所述,研究开发一种新型高效鲁棒性好的人脸活体检测技术应该满足以下几个条件:

① 在线实时处理。活体检测过程应与人脸识别同时进行,越来越多的移动端需求给实时性提出越来越高的要求;

② 受光照等外界影响小。人脸识别验证系统的应用面临着许多场景,活体检测技术应满足多场景、多终端应用的要求,鲁棒性强;

③ 用户界面自然,交互少,欺骗代价高。基于运动等的检测方法对用户来说,增加一系列的交互操作,不仅复杂度增加,可能需要附加的硬件设备支撑,所以新型的活体检测技术应该具有良好的用户体验,同时使得欺骗攻击的代价尽可能的高,保证安全性;

④ 对欺骗有着优异的检测能力,同时对人脸识别特征提取起辅助作用。基于纹理或图像特征的活体检测方法是未来的主要趋势,那么这些特征的提取和分类同样能给人脸识别带来益处。

4、一种可行的人脸活体检测框架:根据总结发现,纯粹的基于和(sum-rule)的理念可能并不适合活体检测,就好比“木桶效应”,伪造攻击只要抓住了短板,一样可以破解大部分基于sum-rule的方法。一种较好的方法是与此对应的多层次结合的概念,结合文献5、8、10、11所述的相关图像特性,可以着眼于图像全局特性分析(质量)和局部特性分析(LBP等)相结合。


Copyright oneie ©2014-2017 All Rights Reserved. 所有资料来源于互联网对相关版权责任概不负责。如发现侵犯了您的版权请与我们联系 QQ:86662817。 网际学院 版权所有 京ICP备14031243号-3
免责声明  商务合作及投稿请联系 QQ:86662817